Quantum unique ergodicity for Eisenstein series on $PSL_2({\Bbb Z}\backslash PSL_2({\Bbb R})$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Quantum Unique Ergodicity

The purpose of this note is to record an observation about quantum unique ergodicity (QUE) which is relevant to the recent construction of H. Donnelly [D] of quasi-modes on nonpositively curved surfaces and to similar examples known as bouncing ball modes [BSS, H] on stadia. It gives a rigorous proof of a localization statement of Heller-O’Connor [HO] for eigenfunctions of the stadium. The rele...

متن کامل

Quantum Unique Ergodicity for Parabolic Maps

We study the ergodic properties of quantized ergodic maps of the torus. It is known that these satisfy quantum ergodicity: For almost all eigenstates, the expectation values of quantum observables converge to the classical phase-space average with respect to Liouville measure of the corresponding classical observable. The possible existence of any exceptional subsequences of eigenstates is an i...

متن کامل

Quantum Unique Ergodicity for Maps on the Torus

When a map is classically uniquely ergodic, it is expected that its quantization will posses quantum unique ergodicity. In this paper we give examples of Quantum Unique Ergodicity for the perturbed Kronecker map, and an upper bound for the rate of convergence.

متن کامل

On Quantum Unique Ergodicity for Linear Maps of the Torus

The problem of “quantum ergodicity” addresses the limiting distribution of eigenfunctions of classically chaotic systems. I survey recent progress on this question in the case of quantum maps of the torus. This example leads to analogues of traditional problems in number theory, such as the classical conjecture of Gauss and Artin that any (reasonable) integer is a primitive root for infinitely ...

متن کامل

On Quantum Unique Ergodicity for Locally Symmetric Spaces I

We construct an equivariant microlocal lift for locally symmetric spaces. In other words, we demonstrate how to lift, in a “semicanonical” fashion, limits of eigenfunction measures on locally symmetric spaces to Cartan-invariant measures on an appropriate bundle. The construction uses elementary features of the representation theory of semisimple real Lie groups, and can be considered a general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 1994

ISSN: 0373-0956

DOI: 10.5802/aif.1442